$\mu = 2.89 \text{ mm}^{-1}$ 

T = 298 (2) K  $0.52 \times 0.47 \times 0.41 \text{ mm}$ 

with  $I > 2\sigma(I)$ 

Z = 4Mo  $K\alpha$  radiation

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# (5-Bromosalicylato)triphenyltin(IV)

#### Hongyun Wang, Handong Yin\* and Dagi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 26 October 2007: accepted 1 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.014 Å; R factor = 0.050; wR factor = 0.104; data-to-parameter ratio = 14.6.

The title compound,  $[Sn(C_6H_5)_3(C_7H_4BrO_3)]$ , crystallizes with two independent molecules in the asymmetric unit, the molecular conformations of which are almost identical. In each molecule, the Sn atom is coordinated by one O and three C atoms in a distorted tetrahedral geometry [Sn-O =2.045 (4) and 2.087 (4) Å; Sn-C = 2.082 (7)-2.117 (7)Å]. The hydroxy groups are involved in intramolecular O- $H \cdots O$  hydrogen bonds.

#### **Related literature**

A series of new triorganotin(IV) pyridinedicarboxylates has been synthesized by the reaction of trimethyltin(IV), triphenyltin(IV) or tribenzyltin(IV) chloride with 2,6(3,5 or 2,5)-H<sub>2</sub>pdc (pdc = pyridinedicarboxylate), see: Ma *et al.* (2006).



### **Experimental**

Crystal data  $[Sn(C_6H_5)_3(C_7H_4BrO_3)]$  $M_r = 566.00$ 

Triclinic,  $P\overline{1}$ a = 11.434 (7) Å

| b = 14.233 (9) Å                 |  |
|----------------------------------|--|
| c = 15.453 (10)  Å               |  |
| $\alpha = 113.920 \ (7)^{\circ}$ |  |
| $\beta = 92.418 \ (8)^{\circ}$   |  |
| $\gamma = 93.818 \ (9)^{\circ}$  |  |
| $V = 2287 (3) \text{ Å}^3$       |  |

#### Data collection

| 11810 measured reflections             |
|----------------------------------------|
| 7898 independent reflections           |
| 4460 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.042$                  |
|                                        |
|                                        |
|                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ | 1 restraint                                                |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.104$               | H-atom parameters constrained                              |
| S = 1.00                        | $\Delta \rho_{\rm max} = 1.49 \text{ e} \text{ Å}^{-3}$    |
| 7898 reflections                | $\Delta \rho_{\rm min} = -1.08 \text{ e } \text{\AA}^{-3}$ |
| 541 parameters                  |                                                            |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$ | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------|------|--------------|--------------|--------------------------------------|
| O3−H3···O2       | 0.82 | 1.86         | 2.583 (8)    | 146                                  |
| O6−H6···O5       | 0.82 | 1.86         | 2.583 (9)    | 147                                  |

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2335).

#### References

- Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713-
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2955 [doi:10.1107/S1600536807055249]

## (5-Bromosalicylato)triphenyltin(IV)

### H. Wang, H. Yin and D. Wang

#### Comment

Organotin esters of carboxylic acids are widely used as biocides, as fungicides and in industry as homogeneous catalysts. We have therefore synthesized the title compound, (I), and present its crystal structure here.

In (I) (Fig. 1), the tin atoms are four-coordinated by the three C atoms from phenyls and the oxygen atom of the monodentate carboxyl group. Thus, the geometry of the tin centers displays a distorted tetrahedral coordinated sphere with six angles ranging from 95.2 (2)  $^{\circ}$  to 125.0 (3)  $^{\circ}$ . The Sn1—O1 distance of 2.045 (4) Å is close to the reported values for triorganotin carboxylates (Ma *et al.*, 2006).

#### Experimental

The reaction was carried out under nitrogen atmosphere. 5-Bromosalicylic acid (1 mmol) and sodium ethoxide (1.2 mmol) were added to the solution of benzene in a Schlenk flask and stirred for 0.5 h. Triphenyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at 313 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/methanol (1:1) (yield 80%; m.p. 427 K). Analysis, calculated (%) for  $C_{25}H_{19}BrO_3Sn$  (Mr = 566.00): C, 53.05; H, 3.39. found: C, 53.36; H, 3.23.

#### Refinement

H atoms were positioned geometrically, with O—H =0.82 Å and C—H = 0.93 Å, and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C,O)$  The residual peak of 1.49 e Å<sup>3</sup> situated 0.45 Å at atom Br2.

#### **Figures**



Fig. 1. The content of asymmetric unit of (I), with atomic numbering and 50% probability displacement ellipsoids for non-H atoms.

### (5-Bromosalicylato)triphenyltin(IV)

| Z = 4                                   |
|-----------------------------------------|
| $F_{000} = 1112$                        |
| $D_{\rm x} = 1.644 \ {\rm Mg \ m}^{-3}$ |
| Mo <i>K</i> α radiation                 |
|                                         |

| <i>b</i> = 14.233 (9) Å          |
|----------------------------------|
| c = 15.453 (10)  Å               |
| $\alpha = 113.920 \ (7)^{\circ}$ |
| $\beta = 92.418 \ (8)^{\circ}$   |
| γ = 93.818 (9)°                  |
| $V = 2287 (3) \text{ Å}^3$       |

#### Data collection

| Bruker SMART CCD area-detector<br>diffractometer               | 7898 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 4460 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.042$                  |
| T = 298(2)  K                                                  | $\theta_{\text{max}} = 25.0^{\circ}$   |
| phi and $\omega$ scans                                         | $\theta_{\min} = 1.5^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -8 \rightarrow 13$                |
| $T_{\min} = 0.315, \ T_{\max} = 0.384$                         | $k = -16 \rightarrow 16$               |
| 11810 measured reflections                                     | $l = -18 \rightarrow 18$               |
|                                                                |                                        |

 $\lambda = 0.71073 \text{ \AA}$ 

 $\theta = 2.4 - 22.2^{\circ}$ 

 $\mu = 2.89 \text{ mm}^{-1}$  T = 298 (2) K Block, colourless  $0.52 \times 0.47 \times 0.41 \text{ mm}$ 

Cell parameters from 2851 reflections

### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                    |
|----------------------------------------------------------------|-------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                                | H-atom parameters constrained                                           |
| $wR(F^2) = 0.104$                                              | $w = 1/[\sigma^2(F_o^2) + (0.03P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.00                                                       | $(\Delta/\sigma)_{\text{max}} = 0.001$                                  |
| 7898 reflections                                               | $\Delta \rho_{max} = 1.49 \text{ e } \text{\AA}^{-3}$                   |
| 541 parameters                                                 | $\Delta \rho_{min} = -1.08 \text{ e } \text{\AA}^{-3}$                  |
| 1 restraint                                                    | Extinction correction: none                                             |
| Primary atom site location: structure-invariant direct methods |                                                                         |

|                               |                  |                    |                  |              | .2      |   |
|-------------------------------|------------------|--------------------|------------------|--------------|---------|---|
| Fractional atomic coordinates | and isotropic or | equivalent isotrop | oic displacement | parameters ( | $(Å^2)$ | ) |

|     | x           | У           | Z           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|-------------|-------------|-------------|-------------------------------|
| Sn1 | 0.73602 (4) | 0.56543 (3) | 0.32221 (3) | 0.04496 (16)                  |
| Sn2 | 0.84682 (4) | 0.90686 (4) | 0.12077 (3) | 0.04421 (16)                  |
| 01  | 0.7057 (4)  | 0.5070 (3)  | 0.1778 (3)  | 0.0520 (12)                   |
| O2  | 0.6858 (4)  | 0.6686 (4)  | 0.1996 (3)  | 0.0572 (13)                   |
| O3  | 0.6488 (4)  | 0.7113 (3)  | 0.0540 (3)  | 0.0632 (14)                   |
| H3  | 0.6599      | 0.7239      | 0.1105      | 0.095*                        |
| O4  | 0.9747 (4)  | 1.0319 (3)  | 0.1780 (3)  | 0.0536 (13)                   |
| O5  | 1.0545 (4)  | 0.9425 (4)  | 0.2486 (4)  | 0.0734 (16)                   |
| O6  | 1.2595 (6)  | 1.0097 (6)  | 0.3379 (5)  | 0.122 (3)                     |

| 11/        | 1 2024                    | 0.0(75                   | 0 2105                  | 0 102*                 |
|------------|---------------------------|--------------------------|-------------------------|------------------------|
| H0<br>Dr1  | 1.2034                    | 0.9675                   | 0.3105                  | $0.183^{*}$            |
| DII<br>Dr? | 0.03930(9)<br>1 10828(15) | 0.23800(0)               | -0.18809(0)             | 0.0788(3)<br>0.1746(7) |
| DI2        | 1.19838(13)               | 1.41106(11)<br>0.5752(6) | 0.30941(9)<br>0.1462(5) | 0.1740(7)              |
| C1<br>C2   | 0.0643(0)                 | 0.5755(0)<br>0.5202(5)   | 0.1403(3)               | 0.0407(18)             |
| C2<br>C3   | 0.6402 (6)                | 0.5393(5)                | 0.0428(5)               | 0.0411(17)             |
| C3         | 0.0495(0)<br>0.6240(7)    | 0.0095(0)                | -0.0020(3)              | 0.0318(19)             |
| 114        | 0.0349 (7)                | 0.5759 (0)               | -0.0939 (0)             | 0.000 (2)              |
| П4<br>С5   | 0.0281                    | 0.0204                   | -0.1238                 | $0.079^{\circ}$        |
| 115        | 0.0308 (7)                | 0.4095 (0)               | -0.1319 (3)             | 0.004 (2)              |
| H5<br>C(   | 0.6194                    | 0.4453                   | -0.2176                 | 0.0//*                 |
| 6          | 0.6433 (6)                | 0.4013 (5)               | -0.1114 (5)             | 0.0469 (18)            |
| C7         | 0.6595 (5)                | 0.4357 (5)               | -0.0149 (5)             | 0.0478 (18)            |
| H7         | 0.6677                    | 0.3886                   | 0.0120                  | 0.057*                 |
| C8         | 0.7657 (6)                | 0.4229 (5)               | 0.3271 (5)              | 0.0499 (19)            |
| C9         | 0.7073 (8)                | 0.3321 (6)               | 0.2696 (6)              | 0.089 (3)              |
| H9         | 0.6496                    | 0.3315                   | 0.2251                  | 0.107*                 |
| C10        | 0.7293 (12)               | 0.2403 (6)               | 0.2739 (7)              | 0.123 (4)              |
| H10        | 0.6870                    | 0.1790                   | 0.2332                  | 0.148*                 |
| C11        | 0.8125 (11)               | 0.2406 (8)               | 0.3374 (8)              | 0.102 (4)              |
| H11        | 0.8268                    | 0.1790                   | 0.3417                  | 0.122*                 |
| C12        | 0.8754 (8)                | 0.3279 (8)               | 0.3948 (8)              | 0.095 (3)              |
| H12        | 0.9348                    | 0.3265                   | 0.4370                  | 0.114*                 |
| C13        | 0.8525 (7)                | 0.4185 (6)               | 0.3914 (6)              | 0.070 (2)              |
| H13        | 0.8955                    | 0.4791                   | 0.4327                  | 0.084*                 |
| C14        | 0.5805 (6)                | 0.6271 (5)               | 0.3818 (4)              | 0.0397 (17)            |
| C15        | 0.5098 (7)                | 0.5749 (5)               | 0.4219 (5)              | 0.054 (2)              |
| H15        | 0.5290                    | 0.5120                   | 0.4207                  | 0.064*                 |
| C16        | 0.4100 (7)                | 0.6182 (7)               | 0.4639 (5)              | 0.070 (2)              |
| H16        | 0.3625                    | 0.5843                   | 0.4917                  | 0.084*                 |
| C17        | 0.3814 (7)                | 0.7104 (8)               | 0.4645 (5)              | 0.072 (2)              |
| H17        | 0.3145                    | 0.7389                   | 0.4925                  | 0.086*                 |
| C18        | 0.4490 (7)                | 0.7589 (6)               | 0.4251 (5)              | 0.061 (2)              |
| H18        | 0.4285                    | 0.8211                   | 0.4254                  | 0.073*                 |
| C19        | 0.5483 (6)                | 0.7192 (5)               | 0.3841 (5)              | 0.0512 (19)            |
| H19        | 0.5947                    | 0.7551                   | 0.3574                  | 0.061*                 |
| C20        | 0.8909 (6)                | 0.6673 (6)               | 0.3631 (5)              | 0.0533 (19)            |
| C21        | 0.9877 (8)                | 0.6457 (7)               | 0.3116 (6)              | 0.079 (3)              |
| H21        | 0.9842                    | 0.5852                   | 0.2566                  | 0.095*                 |
| C22        | 1 0898 (8)                | 0 7106 (9)               | 0.3383(7)               | 0.099 (3)              |
| H22        | 1 1556                    | 0.6924                   | 0.3038                  | 0.118*                 |
| C23        | 1 0931 (8)                | 0.8006 (8)               | 0.4151 (8)              | 0.083(3)               |
| H23        | 1.1602                    | 0.8467                   | 0.4309                  | 0.009 (5)              |
| C24        | 1.0017 (9)                | 0.8253(7)                | 0.4694(7)               | 0.099                  |
| H24        | 1.0077                    | 0.8865                   | 0.5239                  | 0.101*                 |
| C25        | 0.8973 (7)                | 0.7585 (6)               | 0.4437 (6)              | 0.101                  |
| H25        | 0.8334                    | 0.756                    | 0.4806                  | 0.007 (2)              |
| C26        | 1 0530 (6)                | 1 0204 (7)               | 0.4000                  | $0.000^{\circ}$        |
| C20        | 1.0339 (0)                | 1.0204(7)                | 0.2323(3)               | 0.030(2)               |
| C27        | 1.1409 (0)                | 1.10/2(/)                | 0.2778(3)               | 0.002(2)               |
| 0.28       | 1.2458 (8)                | 1.0950 (9)               | 0.3280 (6)              | 0.085 (3)              |

| C29 | 1.3333 (12) | 1.1784 (11) | 0.3673 (9)  | 0.129 (6)   |
|-----|-------------|-------------|-------------|-------------|
| H29 | 1.4011      | 1.1718      | 0.3990      | 0.155*      |
| C30 | 1.3190 (12) | 1.2661 (13) | 0.3590 (9)  | 0.144 (7)   |
| H30 | 1.3782      | 1.3200      | 0.3854      | 0.173*      |
| C31 | 1.2216 (10) | 1.2814 (8)  | 0.3137 (6)  | 0.107 (4)   |
| C32 | 1.1341 (7)  | 1.2010 (7)  | 0.2719 (5)  | 0.074 (3)   |
| H32 | 1.0676      | 1.2096      | 0.2402      | 0.089*      |
| C33 | 0.7522 (6)  | 0.9299 (5)  | 0.2414 (5)  | 0.0499 (19) |
| C34 | 0.8015 (7)  | 0.9261 (5)  | 0.3224 (5)  | 0.062 (2)   |
| H34 | 0.8773      | 0.9062      | 0.3230      | 0.075*      |
| C35 | 0.7407 (10) | 0.9510 (6)  | 0.4028 (6)  | 0.082 (3)   |
| H35 | 0.7762      | 0.9497      | 0.4575      | 0.098*      |
| C36 | 0.6303 (11) | 0.9772 (7)  | 0.4019 (8)  | 0.097 (4)   |
| H36 | 0.5898      | 0.9944      | 0.4564      | 0.116*      |
| C37 | 0.5765 (9)  | 0.9790 (7)  | 0.3219 (9)  | 0.104 (4)   |
| H37 | 0.4990      | 0.9949      | 0.3211      | 0.124*      |
| C38 | 0.6395 (7)  | 0.9566 (6)  | 0.2412 (6)  | 0.072 (2)   |
| H38 | 0.6046      | 0.9600      | 0.1872      | 0.087*      |
| C39 | 0.7617 (6)  | 0.9608 (5)  | 0.0278 (4)  | 0.0469 (18) |
| C40 | 0.6655 (8)  | 0.9063 (7)  | -0.0313 (6) | 0.087 (3)   |
| H40 | 0.6358      | 0.8444      | -0.0302     | 0.104*      |
| C41 | 0.6120 (8)  | 0.9415 (8)  | -0.0922 (7) | 0.103 (3)   |
| H41 | 0.5470      | 0.9030      | -0.1319     | 0.124*      |
| C42 | 0.6530 (8)  | 1.0315 (8)  | -0.0950 (6) | 0.085 (3)   |
| H42 | 0.6158      | 1.0554      | -0.1358     | 0.102*      |
| C43 | 0.7477 (8)  | 1.0857 (7)  | -0.0385 (7) | 0.091 (3)   |
| H43 | 0.7768      | 1.1474      | -0.0403     | 0.110*      |
| C44 | 0.8026 (7)  | 1.0501 (6)  | 0.0228 (6)  | 0.079 (3)   |
| H44 | 0.8687      | 1.0883      | 0.0612      | 0.095*      |
| C45 | 0.9356 (6)  | 0.7777 (5)  | 0.0486 (5)  | 0.0478 (18) |
| C46 | 0.9812 (7)  | 0.7202 (6)  | 0.0937 (6)  | 0.076 (2)   |
| H46 | 0.9700      | 0.7381      | 0.1575      | 0.091*      |
| C47 | 1.0421 (9)  | 0.6379 (7)  | 0.0463 (8)  | 0.101 (3)   |
| H47 | 1.0719      | 0.5997      | 0.0774      | 0.121*      |
| C48 | 1.0587 (8)  | 0.6121 (7)  | -0.0455 (9) | 0.104 (4)   |
| H48 | 1.1013      | 0.5563      | -0.0776     | 0.125*      |
| C49 | 1.0150 (8)  | 0.6655 (8)  | -0.0921 (7) | 0.110 (4)   |
| H49 | 1.0271      | 0.6468      | -0.1559     | 0.132*      |
| C50 | 0.9517 (6)  | 0.7488 (6)  | -0.0443 (6) | 0.069 (2)   |
| H50 | 0.9200      | 0.7851      | -0.0766     | 0.083*      |
|     |             |             |             |             |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$   |
|-----|------------|------------|------------|-------------|-------------|------------|
| Sn1 | 0.0528 (3) | 0.0453 (3) | 0.0366 (3) | -0.0001 (3) | -0.0015 (2) | 0.0178 (2) |
| Sn2 | 0.0393 (3) | 0.0503 (3) | 0.0422 (3) | 0.0039 (2)  | -0.0069 (2) | 0.0191 (2) |
| 01  | 0.071 (3)  | 0.050 (3)  | 0.038 (3)  | 0.010 (3)   | 0.001 (2)   | 0.020 (2)  |
| O2  | 0.072 (4)  | 0.054 (3)  | 0.042 (3)  | 0.001 (3)   | 0.000 (3)   | 0.017 (3)  |

| O3  | 0.078 (4)   | 0.056 (3)   | 0.064 (4)   | 0.013 (3)    | 0.008 (3)    | 0.032 (3)  |
|-----|-------------|-------------|-------------|--------------|--------------|------------|
| O4  | 0.043 (3)   | 0.062 (3)   | 0.050 (3)   | -0.013 (3)   | -0.018 (2)   | 0.022 (3)  |
| 05  | 0.062 (4)   | 0.092 (4)   | 0.071 (4)   | 0.007 (3)    | -0.009 (3)   | 0.040 (3)  |
| O6  | 0.090 (5)   | 0.179 (8)   | 0.080 (5)   | 0.020 (5)    | -0.037 (4)   | 0.038 (5)  |
| Br1 | 0.1071 (7)  | 0.0675 (5)  | 0.0490 (5)  | -0.0003 (5)  | -0.0052 (5)  | 0.0131 (4) |
| Br2 | 0.2350 (17) | 0.1388 (11) | 0.1236 (11) | -0.1209 (12) | -0.0456 (10) | 0.0531 (9) |
| C1  | 0.048 (5)   | 0.051 (5)   | 0.043 (5)   | -0.001 (4)   | 0.011 (4)    | 0.022 (4)  |
| C2  | 0.039 (4)   | 0.052 (4)   | 0.037 (4)   | 0.000 (4)    | 0.002 (3)    | 0.024 (4)  |
| C3  | 0.054 (5)   | 0.060 (5)   | 0.046 (5)   | 0.000 (4)    | 0.004 (4)    | 0.026 (4)  |
| C4  | 0.084 (6)   | 0.076 (6)   | 0.057 (6)   | 0.014 (5)    | 0.005 (5)    | 0.046 (5)  |
| C5  | 0.077 (6)   | 0.080 (6)   | 0.035 (5)   | 0.000 (5)    | -0.001 (4)   | 0.024 (5)  |
| C6  | 0.043 (4)   | 0.050 (4)   | 0.050 (5)   | -0.005 (4)   | -0.005 (4)   | 0.025 (4)  |
| C7  | 0.050 (5)   | 0.062 (5)   | 0.038 (4)   | 0.005 (4)    | 0.002 (3)    | 0.028 (4)  |
| C8  | 0.069 (5)   | 0.045 (4)   | 0.037 (4)   | 0.002 (4)    | 0.008 (4)    | 0.018 (4)  |
| C9  | 0.128 (8)   | 0.054 (5)   | 0.080 (7)   | -0.005 (6)   | -0.035 (6)   | 0.028 (5)  |
| C10 | 0.230 (14)  | 0.036 (5)   | 0.099 (9)   | 0.012 (7)    | -0.017 (9)   | 0.028 (6)  |
| C11 | 0.149 (11)  | 0.080 (8)   | 0.109 (10)  | 0.051 (8)    | 0.047 (8)    | 0.062 (7)  |
| C12 | 0.093 (8)   | 0.095 (7)   | 0.126 (9)   | 0.014 (7)    | -0.007 (6)   | 0.074 (7)  |
| C13 | 0.070 (6)   | 0.061 (5)   | 0.093 (7)   | -0.002 (5)   | -0.004 (5)   | 0.049 (5)  |
| C14 | 0.042 (4)   | 0.048 (4)   | 0.029 (4)   | 0.000 (4)    | -0.005 (3)   | 0.018 (3)  |
| C15 | 0.060 (5)   | 0.060 (5)   | 0.040 (5)   | -0.010 (4)   | -0.007 (4)   | 0.024 (4)  |
| C16 | 0.047 (5)   | 0.112 (8)   | 0.064 (6)   | -0.014 (5)   | 0.005 (4)    | 0.053 (6)  |
| C17 | 0.046 (5)   | 0.113 (8)   | 0.049 (5)   | 0.021 (6)    | -0.003 (4)   | 0.025 (5)  |
| C18 | 0.065 (6)   | 0.073 (6)   | 0.050 (5)   | 0.017 (5)    | 0.006 (4)    | 0.029 (4)  |
| C19 | 0.054 (5)   | 0.052 (5)   | 0.044 (5)   | -0.006 (4)   | 0.006 (4)    | 0.018 (4)  |
| C20 | 0.046 (5)   | 0.069 (5)   | 0.051 (5)   | -0.001 (4)   | -0.006 (4)   | 0.033 (4)  |
| C21 | 0.065 (6)   | 0.097 (7)   | 0.060 (6)   | 0.001 (6)    | 0.003 (5)    | 0.019 (5)  |
| C22 | 0.056 (7)   | 0.134 (9)   | 0.096 (8)   | -0.010(7)    | 0.015 (6)    | 0.038 (7)  |
| C23 | 0.059 (7)   | 0.090 (8)   | 0.114 (9)   | -0.020 (6)   | -0.017 (6)   | 0.064 (7)  |
| C24 | 0.087 (7)   | 0.062 (6)   | 0.088 (7)   | -0.007 (6)   | -0.024 (6)   | 0.020 (5)  |
| C25 | 0.052 (5)   | 0.066 (5)   | 0.071 (6)   | 0.002 (5)    | 0.001 (4)    | 0.018 (5)  |
| C26 | 0.039 (5)   | 0.080 (6)   | 0.036 (5)   | -0.009 (5)   | 0.003 (4)    | 0.013 (4)  |
| C27 | 0.043 (5)   | 0.099 (7)   | 0.030 (4)   | -0.008 (5)   | -0.003 (4)   | 0.015 (5)  |
| C28 | 0.051 (6)   | 0.142 (10)  | 0.043 (6)   | 0.008 (7)    | -0.007 (4)   | 0.018 (6)  |
| C29 | 0.062 (8)   | 0.207 (16)  | 0.062 (7)   | -0.005 (11)  | -0.026 (6)   | 0.003 (10) |
| C30 | 0.072 (10)  | 0.237 (18)  | 0.057 (8)   | -0.067 (12)  | -0.010 (6)   | 0.005 (11) |
| C31 | 0.117 (9)   | 0.132 (9)   | 0.044 (6)   | -0.073 (8)   | -0.017 (6)   | 0.021 (6)  |
| C32 | 0.069 (6)   | 0.100(7)    | 0.040 (5)   | -0.034 (6)   | -0.009 (4)   | 0.022 (5)  |
| C33 | 0.047 (5)   | 0.034 (4)   | 0.054 (5)   | -0.005 (4)   | -0.012 (4)   | 0.006 (4)  |
| C34 | 0.066 (6)   | 0.070 (5)   | 0.054 (5)   | 0.009 (5)    | 0.009 (5)    | 0.027 (4)  |
| C35 | 0.105 (8)   | 0.072 (6)   | 0.059 (6)   | -0.010 (6)   | 0.023 (6)    | 0.019 (5)  |
| C36 | 0.114 (10)  | 0.063 (6)   | 0.087 (8)   | -0.012 (7)   | 0.049 (7)    | 0.004 (6)  |
| C37 | 0.061 (7)   | 0.080 (7)   | 0.147 (11)  | 0.008 (6)    | 0.054 (8)    | 0.019 (8)  |
| C38 | 0.058 (6)   | 0.061 (5)   | 0.090 (7)   | 0.004 (5)    | 0.003 (5)    | 0.024 (5)  |
| C39 | 0.046 (5)   | 0.054 (4)   | 0.041 (4)   | 0.003 (4)    | -0.007 (4)   | 0.020 (4)  |
| C40 | 0.090 (7)   | 0.082 (6)   | 0.095 (7)   | -0.017 (6)   | -0.041 (6)   | 0.052 (6)  |
| C41 | 0.089 (8)   | 0.099 (8)   | 0.116 (9)   | -0.038 (6)   | -0.042 (6)   | 0.050 (7)  |
| C42 | 0.078 (7)   | 0.117 (8)   | 0.079 (7)   | -0.005 (6)   | -0.015 (5)   | 0.065 (6)  |
| C43 | 0.098 (8)   | 0.093 (7)   | 0.107 (8)   | -0.012 (6)   | -0.025 (6)   | 0.070 (6)  |
|     |             |             |             |              |              |            |

| C44             | 0.078 (6)    | 0.085 (6)  | 0.084 (7)  | -0.020(5) | -0.031 (5) | 0.051 (5)  |  |
|-----------------|--------------|------------|------------|-----------|------------|------------|--|
| C45             | 0.043 (4)    | 0.047 (4)  | 0.043 (5)  | -0.002(4) | 0.002 (4)  | 0.009 (4)  |  |
| C46             | 0.082 (6)    | 0.069 (6)  | 0.076 (6)  | 0.026 (5) | -0.005 (5) | 0.028 (5)  |  |
| C47             | 0.113 (8)    | 0.072 (7)  | 0.098 (8)  | 0.026 (6) | -0.030(7)  | 0.016 (6)  |  |
| C48             | 0.062 (6)    | 0.089 (7)  | 0.111 (10) | 0.036 (5) | -0.017 (6) | -0.012 (7) |  |
| C49             | 0.083 (7)    | 0.147 (10) | 0.062 (7)  | 0.034 (7) | 0.012 (6)  | 0.001 (7)  |  |
| C50             | 0.059 (5)    | 0.076 (6)  | 0.063 (6)  | 0.015 (5) | 0.008 (4)  | 0.017 (5)  |  |
| Coometric nava  | natous (Å 9) |            |            |           |            |            |  |
| Geometric paran | neiers (A, ) |            |            |           |            |            |  |
| Sn1—O1          |              | 2.045 (4)  | C21—C      | 222       | 1          | 1.376 (11) |  |
| Sn1—C8          |              | 2.110 (7)  | С21—Н      | 121       | C          | ).9300     |  |
| Sn1—C20         |              | 2.112 (7)  | С22—С      | 223       | 1          | 1.344 (11) |  |
| Sn1-C14         |              | 2.115 (7)  | С22—Н      | 122       | C          | 0.9300     |  |
| Sn2—C45         |              | 2.082 (7)  | С23—С      | 224       | 1          | 1.344 (11) |  |
| Sn2—O4          |              | 2.087 (4)  | С23—Н      | 123       | C          | ).9300     |  |
| Sn2—C33         |              | 2.116 (7)  | С24—С      | 25        | 1          | 1.411 (10) |  |
| Sn2—C39         |              | 2.117 (7)  | С24—Н      | 124       | C          | ).9300     |  |
| 01—C1           |              | 1.283 (7)  | С25—Н      | 125       | C          | 0.9300     |  |
| O2—C1           |              | 1.246 (7)  | C26—C      | 27        | 1          | 1.486 (10) |  |
| O3—C3           |              | 1.340 (7)  | С27—С      | 232       | 1          | 1.390 (10) |  |
| O3—H3           |              | 0.8200     | С27—С      | 28        | 1          | .401 (11)  |  |
| O4—C26          |              | 1.274 (8)  | C28—C      | 29        | 1          | .404 (15)  |  |
| O5—C26          |              | 1.231 (8)  | С29—С      | 230       | 1          | 1.325 (17) |  |
| O6—C28          |              | 1.311 (11) | С29—Н      | 129       | C          | ).9300     |  |
| O6—H6           |              | 0.8200     | С30—С      | 231       | 1          | 1.366 (16) |  |
| Br1—C6          |              | 1.894 (7)  | С30—Н      | 130       | 0          | 0.9300     |  |
| Br2-C31         |              | 1.910 (11) | C31—C      | 232       | 1          | 1.386 (11) |  |
| C1—C2           |              | 1.470 (9)  | С32—Н      | 132       | C          | ).9300     |  |
| C2—C7           |              | 1.375 (8)  | С33—С      | 238       | 1          | 1.368 (10) |  |
| C2—C3           |              | 1.390 (9)  | С33—С      | 234       | 1          | 1.373 (9)  |  |
| C3—C4           |              | 1.394 (9)  | С34—С      | 235       | 1          | 1.379 (10) |  |
| C4—C5           |              | 1.383 (9)  | С34—Н      | 134       | 0          | ).9300     |  |
| C4—H4           |              | 0.9300     | С35—С      | 236       | 1          | .341 (12)  |  |
| C5—C6           |              | 1.361 (9)  | С35—Н      | 135       | 0          | 0.9300     |  |
| С5—Н5           |              | 0.9300     | C36—C      | 237       | 1          | 1.368 (13) |  |
| C6—C7           |              | 1.366 (8)  | С36—Н      | 136       | C          | ).9300     |  |
| С7—Н7           |              | 0.9300     | С37—С      | 238       | 1          | 1.400 (11) |  |
| С8—С9           |              | 1.344 (9)  | С37—Н      | 137       | C          | ).9300     |  |
| C8—C13          |              | 1.396 (9)  | С38—Н      | 138       | 0          | ).9300     |  |
| C9—C10          |              | 1.374 (11) | С39—С      | 44        | 1          | 1.358 (9)  |  |
| С9—Н9           |              | 0.9300     | С39—С      | 40        | 1          | 1.368 (9)  |  |
| C10-C11         |              | 1.336 (13) | C40—C      | 41        | 1          | 1.372 (10) |  |
| C10—H10         |              | 0.9300     | С40—Н      | 140       | 0          | 0.9300     |  |
| C11—C12         |              | 1.334 (12) | C41—C      | 42        | 1          | 1.353 (10) |  |
| C11—H11         |              | 0.9300     | С41—Н      | [41       | C          | 0.9300     |  |
| C12—C13         |              | 1.354 (10) | C42—C      | 43        | 1          | 1.340 (10) |  |
| C12—H12         |              | 0.9300     | С42—Н      | 142       | C          | 0.9300     |  |
| C13—H13         |              | 0.9300     | C43—C      | 44        | 1          | 1.388 (10) |  |

| C14—C19     | 1.372 (8)  | C43—H43     | 0.9300     |
|-------------|------------|-------------|------------|
| C14—C15     | 1.387 (8)  | C44—H44     | 0.9300     |
| C15—C16     | 1.391 (10) | C45—C50     | 1.348 (9)  |
| С15—Н15     | 0.9300     | C45—C46     | 1.384 (9)  |
| C16—C17     | 1.370 (10) | C46—C47     | 1.360 (11) |
| С16—Н16     | 0.9300     | C46—H46     | 0.9300     |
| C17—C18     | 1.324 (10) | C47—C48     | 1.339 (12) |
| C17—H17     | 0.9300     | C47—H47     | 0.9300     |
| C18—C19     | 1.366 (9)  | C48—C49     | 1.347 (12) |
| C18—H18     | 0.9300     | C48—H48     | 0.9300     |
| С19—Н19     | 0.9300     | C49—C50     | 1.387 (11) |
| C20—C21     | 1.369 (10) | С49—Н49     | 0.9300     |
| C20—C25     | 1.381 (9)  | С50—Н50     | 0.9300     |
| O1—Sn1—C8   | 95.4 (2)   | C24—C23—H23 | 119.3      |
| O1—Sn1—C20  | 108.9 (2)  | С22—С23—Н23 | 119.3      |
| C8—Sn1—C20  | 111.4 (3)  | C23—C24—C25 | 120.0 (8)  |
| O1—Sn1—C14  | 107.4 (2)  | C23—C24—H24 | 120.0      |
| C8—Sn1—C14  | 114.5 (3)  | C25—C24—H24 | 120.0      |
| C20—Sn1—C14 | 116.8 (3)  | C20—C25—C24 | 119.3 (7)  |
| C45—Sn2—O4  | 106.3 (2)  | С20—С25—Н25 | 120.3      |
| C45—Sn2—C33 | 125.0 (3)  | С24—С25—Н25 | 120.3      |
| O4—Sn2—C33  | 100.3 (2)  | O5—C26—O4   | 122.8 (7)  |
| C45—Sn2—C39 | 112.4 (3)  | O5—C26—C27  | 120.7 (8)  |
| O4—Sn2—C39  | 95.2 (2)   | O4—C26—C27  | 116.6 (8)  |
| C33—Sn2—C39 | 112.0 (3)  | C32—C27—C28 | 120.0 (9)  |
| C1—O1—Sn1   | 113.8 (4)  | C32—C27—C26 | 119.7 (8)  |
| С3—О3—Н3    | 109.5      | C28—C27—C26 | 120.3 (9)  |
| C26—O4—Sn2  | 113.3 (5)  | O6—C28—C27  | 122.0 (10) |
| С28—О6—Н6   | 109.5      | O6—C28—C29  | 119.5 (10) |
| 02—C1—O1    | 122.2 (7)  | C27—C28—C29 | 118.5 (11) |
| O2—C1—C2    | 120.8 (7)  | C30—C29—C28 | 119.7 (15) |
| O1—C1—C2    | 116.9 (6)  | С30—С29—Н29 | 120.1      |
| C7—C2—C3    | 119.5 (6)  | С28—С29—Н29 | 120.1      |
| C7—C2—C1    | 120.2 (6)  | C29—C30—C31 | 123.2 (16) |
| C3—C2—C1    | 120.3 (6)  | С29—С30—Н30 | 118.4      |
| O3—C3—C2    | 123.2 (7)  | С31—С30—Н30 | 118.4      |
| O3—C3—C4    | 117.6 (7)  | C30—C31—C32 | 119.0 (12) |
| C2—C3—C4    | 119.2 (7)  | C30—C31—Br2 | 122.5 (10) |
| C5—C4—C3    | 119.7 (7)  | C32—C31—Br2 | 118.4 (9)  |
| C5—C4—H4    | 120.1      | C31—C32—C27 | 119.4 (9)  |
| С3—С4—Н4    | 120.1      | С31—С32—Н32 | 120.3      |
| C6—C5—C4    | 120.3 (7)  | С27—С32—Н32 | 120.3      |
| С6—С5—Н5    | 119.9      | C38—C33—C34 | 118.5 (7)  |
| С4—С5—Н5    | 119.9      | C38—C33—Sn2 | 118.5 (6)  |
| C5—C6—C7    | 120.3 (7)  | C34—C33—Sn2 | 122.9 (6)  |
| C5—C6—Br1   | 120.3 (6)  | C33—C34—C35 | 121.2 (8)  |
| C7—C6—Br1   | 119.4 (5)  | С33—С34—Н34 | 119.4      |
| C6—C7—C2    | 120.9 (6)  | С35—С34—Н34 | 119.4      |
| С6—С7—Н7    | 119.6      | C36—C35—C34 | 119.9 (10) |

| С2—С7—Н7    | 119.6      | С36—С35—Н35 | 120.1      |
|-------------|------------|-------------|------------|
| C9—C8—C13   | 115.9 (7)  | С34—С35—Н35 | 120.1      |
| C9—C8—Sn1   | 124.1 (6)  | C35—C36—C37 | 120.8 (10) |
| C13—C8—Sn1  | 120.1 (5)  | С35—С36—Н36 | 119.6      |
| C8—C9—C10   | 122.7 (9)  | С37—С36—Н36 | 119.6      |
| С8—С9—Н9    | 118.6      | C36—C37—C38 | 119.2 (10) |
| С10—С9—Н9   | 118.6      | С36—С37—Н37 | 120.4      |
| C11—C10—C9  | 119.0 (10) | С38—С37—Н37 | 120.4      |
| С11—С10—Н10 | 120.5      | C33—C38—C37 | 120.3 (9)  |
| С9—С10—Н10  | 120.5      | С33—С38—Н38 | 119.8      |
| C12-C11-C10 | 121.0 (9)  | С37—С38—Н38 | 119.8      |
| С12—С11—Н11 | 119.5      | C44—C39—C40 | 117.3 (7)  |
| C10-C11-H11 | 119.5      | C44—C39—Sn2 | 121.0 (6)  |
| C11—C12—C13 | 120.0 (9)  | C40—C39—Sn2 | 121.7 (6)  |
| C11—C12—H12 | 120.0      | C39—C40—C41 | 121.1 (8)  |
| C13—C12—H12 | 120.0      | C39—C40—H40 | 119.4      |
| C12—C13—C8  | 121.4 (8)  | C41—C40—H40 | 119.4      |
| C12-C13-H13 | 119.3      | C42—C41—C40 | 120.7 (9)  |
| С8—С13—Н13  | 119.3      | C42—C41—H41 | 119.7      |
| C19—C14—C15 | 118.6 (6)  | C40—C41—H41 | 119.7      |
| C19—C14—Sn1 | 121.8 (5)  | C43—C42—C41 | 119.3 (9)  |
| C15—C14—Sn1 | 119.6 (5)  | C43—C42—H42 | 120.4      |
| C14—C15—C16 | 119.0 (7)  | C41—C42—H42 | 120.4      |
| C14—C15—H15 | 120.5      | C42—C43—C44 | 120.2 (8)  |
| C16—C15—H15 | 120.5      | C42—C43—H43 | 119.9      |
| C17—C16—C15 | 120.4 (7)  | C44—C43—H43 | 119.9      |
| C17—C16—H16 | 119.8      | C39—C44—C43 | 121.4 (8)  |
| C15-C16-H16 | 119.8      | C39—C44—H44 | 119.3      |
| C18—C17—C16 | 120.0 (8)  | C43—C44—H44 | 119.3      |
| C18—C17—H17 | 120.0      | C50—C45—C46 | 118.1 (7)  |
| C16—C17—H17 | 120.0      | C50—C45—Sn2 | 120.1 (6)  |
| C17—C18—C19 | 121.3 (8)  | C46—C45—Sn2 | 121.8 (6)  |
| C17—C18—H18 | 119.4      | C47—C46—C45 | 121.1 (9)  |
| C19—C18—H18 | 119.4      | С47—С46—Н46 | 119.4      |
| C18—C19—C14 | 120.8 (7)  | C45—C46—H46 | 119.4      |
| C18—C19—H19 | 119.6      | C48—C47—C46 | 119.6 (10) |
| С14—С19—Н19 | 119.6      | С48—С47—Н47 | 120.2      |
| C21—C20—C25 | 117.9 (7)  | С46—С47—Н47 | 120.2      |
| C21—C20—Sn1 | 121.6 (6)  | C47—C48—C49 | 121.1 (10) |
| C25—C20—Sn1 | 120.4 (6)  | С47—С48—Н48 | 119.4      |
| C20—C21—C22 | 122.2 (8)  | C49—C48—H48 | 119.4      |
| C20—C21—H21 | 118.9      | C48—C49—C50 | 119.5 (9)  |
| C22—C21—H21 | 118.9      | C48—C49—H49 | 120.3      |
| C23—C22—C21 | 119.0 (9)  | C50—C49—H49 | 120.3      |
| C23—C22—H22 | 120.5      | C45—C50—C49 | 120.6 (8)  |
| C21—C22—H22 | 120.5      | C45—C50—H50 | 119.7      |
| C24—C23—C22 | 121.4 (9)  | С49—С50—Н50 | 119.7      |

## Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$ |
|----------|-------------|--------------|--------------|---------------------------------------------------|
| O3—H3…O2 | 0.82        | 1.86         | 2.583 (8)    | 146                                               |
| O6—H6…O5 | 0.82        | 1.86         | 2.583 (9)    | 147                                               |



